Non-Markovian Evolution of Multi-level System Interacting with Several Reservoirs. Exact and Approximate
نویسندگان
چکیده
منابع مشابه
Exact and approximate moment closures for non-Markovian network epidemics.
Moment-closure techniques are commonly used to generate low-dimensional deterministic models to approximate the average dynamics of stochastic systems on networks. The quality of such closures is usually difficult to asses and furthermore the relationship between model assumptions and closure accuracy are often difficult, if not impossible, to quantify. Here we carefully examine some commonly u...
متن کاملOn Completely Positive Non-Markovian Evolution of a d-Level System
A sufficient condition for non-Markovian master equation which ensures the complete positivity of the resulting time evolution is presented.
متن کاملNon-Markovian Agent Evolution with EVOLP
Logic Programming Update Languages were proposed as an extension of logic programming, which allow for modelling the dynamics of knowledge bases where both extensional knowledge (facts) as well as intentional knowledge (rules) may change over time due to updates, with important application Multi-Agent Systems (MAS). Despite their generality, these languages do not provide means to directly acce...
متن کاملTwo-Level Atom-Field Interaction: Exact Master Equations for Non-Markovian Dynamics, Decoherence and Relaxation
We perform a firstprinciples derivation of the general master equation to study the nonMarkovian dynamics of a two-level atom (2LA) interacting with an electromagnetic field (EMF). We use the influence functional method which can incorporate the full backreaction of the field on the atom, while adopting Grassmannian variables for the 2LA and the coherent state representation for the EMF. We fin...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lobachevskii Journal of Mathematics
سال: 2019
ISSN: 1995-0802,1818-9962
DOI: 10.1134/s1995080219100263